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A game with dynamics described by partial differential equations is considered. The equations of the players are additively 
represented on the right-hand side and are subject to integral or pointwise restrictions. The goal of the first player, who is informed 
of the instantaneous value of the control of his partner, is to bring the system into an unperturbed state. To solve the problem 
the decomposition meth~:l developed in [1] for a controlled system (with one player) is used. Three combinations of restrictions 
on the players are considered. In all cases the control of the first player is presented explicitly. The main complication, compared 
with the problem considered previously [1] is that this control consists of two terms estimated in different norms. 

Suppose that in the ,,;pace L2(~ ) a differential operator A is specified of the form [2] 

A z  = -  ~'~ ( a i j ( x )  , x ~ L ' 2  (1) 
i,j=l 

aij(x ) = a j i ( x  ) E C I ( ' ~ )  

where fl is a bounded domain in R n. The domain of definition D(A) of the operatorA is C2(~) (the 
space of doubly continuously differentiable finite functions). The coefficients aij(x) satisfy the following 
condition: a constant y ~ 0 exists such that 

~, aiy(x)~i~ j ~ > Y 2 ~ 2 ,  V(~I ..... ~n)~R n, x ~  (2) 
i,j=l i=l 

which signifies the ellipticity of the operator A. 
Putting 

(z, Y)A = (Ax, y), z, y e 6;2(f~) 

it can be shown that ( . , . ) A  satisfies all the requirements of a scalar product. Thus C2(f~) is turned 
into a Hilbert space. But it is incomplete with respect to the norm generated by the scalar product 
( . , . ) ,4 .  Completing the space ¢~2(f~) relative to the norm 

Ilzll A = ~[(Az,z), z ~ ~2(f~) 

we obtain a complete Hilbert space, called the energy space of the operatorA and denoted by HA. 
An operatorA with condition (2) has a discrete spectrum [3], i.e. it has an infinite sequence ~1, Lz, 

• . .  of generalized numbers with a unique limit at infinity and a sequence ¢1, ~ ,  • • • of generalized 
eigenelements, complete in the space L2(f~). Without loss of generality, we can put (q~i, 9j) = 6~, where 
6ij is the Kronecker delta. 

Using these facts we can construct the following spaces (which are, of course, associated with the 
operatorA) [4]• Let 
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I r = {or = (otl, ot 2 .... ): 

Hr(~  ) = { f  • L,2 (~'1): 

In the spaces It, Hr(f~) we define scalar products as follows: 

'2 r2 } ~i{~ i < o o  

i=l 

f = i=l ~ (gi(Pi' ~ E I r } 

From this 

(IX, ~)r = ~ ~Lr{xi~i ' 0{, ~ • I r 
i=1 

Similarly 

(f,g)r =(Ot,~)r; f= ~ OtitPi, g= ~ ~ilPi 
i=1 i=1 

From this U/II = II a II. 
We note that H0(fl) = L2(~) and n r ( ~  ) C n s ( ~  ) when s < r. 
We will denote by C(0, T; Hr(~))(L2(O, T; H~(I)))) the space consisting of continuous (measurable) 

functions on [0, T] with values in H~(fl), where T is a positive constant. 
The equations encountered below are to be interpreted using the theory of distributions (general- 

ized functions) [4]. 
We consider the following differential game 

dz(t) I dt + Az(t) = -u(t)  + D(t), 

u(.),~(.) • / .~(0,T;  Hr(f~)) 

z(0) = z °, z ° e Hr+ I (~)  

0 < t ~  T 

(3) 

The opera torA is specified in the form (1). 
It was proved in [4] that a unique solution of problem (3) exists in the space C(0), T; Hr+l(f~)) if 

z ° • Hr+l(f~) for some r I> 0. 
The functions u(t), ~(t), 0 <~ t <- T are called controls of the first (pursuing) and second (evading) 

player, respectively. They are constricted by restrictions given by one of  the following systems of  
inequalities 

Ilu() I1~< P, lID(') I1~< ~ (4) 

Ilu(.)ll~ < p, IIx~(t)ll~ < a, 0<~ t ~  < T (5) 

Ilu(t)ll~ < p, 0 ~< t ~< T, IID(.)II<~ t~ (6) 

where p, and a are non-negative constants. 
Controls u(t), ~(t), 0 ~< t ~< Twhich satisfy one of the conditions (4)--(6) are called admissible. 

Definition. We say that in the game (3), (4) or (3), (5) or (3), (6) one can complete the pursuit from 
the initial point z ° if a number T = T(z U) >~ 0 exists such that for any admissible control ~(-) of the evading 
player, knowing at every time t e [0, T] the equation from (3) and the value of ~(t), one can choose the 
value ofu(t)  such that u(.) is an admissible control of the pursuing player andz(t ')  = 0 for the game (3), 
(4) and (3), (5), and supk [ z~(t') I ~< l for the game (3), (6), where zk(') is the Fourier coefficient, 1 > 0 is 
a constant, t' • [0, T], and z(-) is the solution of the corresponding problem with controls u, a~. 

The pursuit problem. In game (3), (4) or (3), (5) or (3), (6) it is required to find, for every initial point 
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z ° a guaranteed time T(z °) for finishing the game and to construct an admissible control u(.) for the 
pursuing player which satisfies the conditions of the definition given above. 

Theorem 1. If 

p > o (7) 

then the pursuit problem is solvable for game (3), (4). Here 

T(Z o) =llz°ll 2/(p - 0) 2 (8) 

2. If 

p2 I> 4ollz011 (9) 

then the pursuit problem is solvable for game (3), (5). Here 

T(z o) = [(p _ ~/p2 _ 4allz011) / (2o)12 (10) 

3. If p > 0, then tile pursuit problem is solvable for game (3), (6). 

Proof. 1. Using condition (7), the control u(t), 0 <~ t <~ T of the pursuing player can be represented 
in the form [5] 

u(t) = x)(t) + w(t), 0 <- t ~ T (11) 

where w(t), 0 <- t <~ T is some as yet undefined function satisfying the inequality 

II w(.) II <~ p - a (12) 

We will represent the solution z(t) and the function w(t) as Fourier series 

z( t )= ~ zk ( t )%,  w( t )= ~ wk( t )%,  Zk(.),wk(.)~L2 (13) 
k=l k=l 

f. dt < 00, ~ ~.~ ~ I w k (012 dt =llw(.)ll 2 
k=l 0 k=l 0 

Substituting expansions (13) into Eq. (3), using relation (11) and equating corresponding coeffici- 
ents of the complete system {%}, we obtain an infinite system of differential equations. 

Integrating each equation of this system with appropriate initial conditions, we obtain 

. . . .  

where z~ = (z °, %) (k = 1, 2 . . . .  ) are the Fourier coefficients of the function z °. 
It can be directly verified that when 

w k ( t ) = ~ s i g n z ~ ,  0 ~ t ~ T  o (14) 

W~ = ~,klzOI/(e ~'kr° -- 1), T O = T(Z °) =llz°ll 2 1(0-O) 2 

we have the equalities 

zATo)=O, k = l , 2  .... (15) 

and the function w(t), 0 <- t <~ T satisfies inequality (12) when T = T 0. From this we have the admissibility 
of the control (11) 
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II u(.)ll ~< II ~(.)11+11 w(.)ll ~< o + p - o = p. 

Because all the Fourier coefficients zk(t), 0 <<- t <~ T vanish at t = To by virtue of (15), we have 
z(To) = O. 

2. We will choose the control u(t), 0 <- t <~ T of the pursuing player in the form (11). The 
function w(t), 0 <~ t <~ T is given by the second equation in (13) and formula (14). If T(z °) is given by 
(10), then II w(.) II 2 ~< T -1 II z ° II 2, i.e. w(.) ~ L2(0, T; Hr(i))). 

From this we have IJ w(.) IJ ~< P - o~JT. Noting that II % )  II ~< o~JT, we find that II u(.) II ~ p, i.e. the 
control ( ( 1 2 ) )  is admissible. 

It can be shown by direct computation that zk(T) = 0 (k = 1, 2 . . . .  ), i.e. z(T) - 0. 
3. Because the pursuer knows the value of the evading player's control u(t) at every time t, the pursuer 

can represent u(t) in the form Ul(t) + a~2(t), 0 ~< t ~< T ,  where the function Ul(.), ~2(') is constructed 
as follows: 

I ~(t), if IID(t)ll~ < 

~)l( t )  = ~p~)( t ) l l l~) ( t ) l l ,  if II~(t)ll> 

0, if II~)(t)ll~ < 

D2(t) = (llD(t)ll-'p)~)(t)lllD(t)ll, if IlD(t)ll> 

where ~ is some fixed non-negative constant satisfying the inequality ~ > p. 
If one chooses a control u(t), 0 <~ t <~ T in the form (11), where II w(t) II ~< P - P ,  0 ~< t ~ T ,  then 

the right-hand side of  the equation consists of two controls which direct the first and second players, 
respectively. It has been shown [1] that a time T exists such that using the control w(.) one can take 
the trajectory to the origin of coordinates. Hence the second player, controlling the function u(.), strives 
to violate the inequality supk I zk(T) I <- I. 

Thus, to solve the corresponding differential equations we have 

T X 
Zk (T) = - e  - x :  S e kt'O2k (t)dl o 
~)2k(t)=(D2(t),q)k), O<~t<~T, k = l , 2  .... 

(16) 

We suppose that II u(') II ~< Ol where 0 < 01 ~ o. Then for fixed k (~  > 1) we have 

I ~)2k (t)l~< (llg(t)ll-'ff)~.-~ r/2 

where equality is achieved if a~(t) = ~)k(t)fPk, where 9k(t) = 0)(t), {Pk)), 0 ~< t ~< T. From this and from 
(16) we obtain 

T 
IZk (T)I<- I k, !~ = e - X :  I e Xk'lll~(t)lI-Fldt)~r/2 0 

Let 

( [1 e2~*(r--r)] ~ e zk(~-r) 
max 1 ~ < / O , / . - ~  L J _ 1 -  

II~(')II~01 ~ k  " -- p ~k 

It can be shown that equality is achieved if 

E(2~kr 2kk~)~ 2 ]-I 
l ) ( t )  = ateX~'//e - e q~k 

O<<.T<~t<~T, ll~)(.)ll~<ol, a)(t)~>~, T<~t~T 



Some problems in the theory  of  differential  pursui t  games 939 

Using the methods  of  differential  calculus one  can verify that  

~,~(0), 

~Pk = m a x  ~F~ ( T )  = (S~ 

~k  = ln(l +a2~'k / ( 2P~) ) / (2kk )  

T~< ~k 

T > ~  k 

Thus,  if maxk~,l '~k ~< l, the game ends af ter  a t ime T. Otherwise,  i.e. if I zk(T) I > l for  some k ( ~  > 1), 
then  I < Wk and f rom this we have a l  ~> c = const > 0. 

Taking z(T)  as a new initial position, using similar arguments  we arrive at the following conclusion: 
e i ther  the game ends after  a t ime T + 7"1, or  the second player  gain loses an amount  o f  energy not  less 
than c. Thus,  af ter  a finite number  of  steps the energy of  the second player  is exhausted,  which means  
the end  of  the game. 

Example. Suppose that heat is propagating along a rod of unit length whose ends are maintained at zero 
temperature. We then have problem (3) whereAz = -d2z/dx 2 and the domain of definition of A is the subspace 
C2(0, 1) of the space L2(0, 1). The function z ° has the form 

zO 1 f -4x  3+3x, 0~<x~<~ 

= 4--ff~[--4(1-x)3 + 3(1-~), ~A~x~l  

It has been shown [2] that the energy space H of operatorA is the space I~(0,  1) consisting of functions satisfying 
the following conditions 

1. they are absolutely continuous on [0, 1]; 
2. their first derivatives are square integrable on [0, 1]; 
3. they vanish at the points x = 0, x = 1. 
The generalized eigenfunctions and eigenvalues of the operatorA have the form [2] 

~0k=~sinr&x,  0~<x~l ,  ~.tc=(nk) 2, k= l ,2  .... 

Using this information we construct the space Hr(0, 1), r >~ 0. 

Case 1. Suppose the constraints II u(.) II ~< 2, II v(') II ~< 1 are imposed on the control functions u(t), ~(t), 0 <~ t 
~<T. 

One can verify thatz ° ~ H~(0,1) when r = 3. Hence if u(.), ~(.) ~//2(0, 1) then problem (3) has a unique solution 
z(.) in the space C(0, T;/-/3(0, 1)). Applying Section 1 of the theorem we find that the pursuit can be terminated 
after a time 

1 - 1 1 
r=_-_-_-_-~it k=lE (2k_l)  2 = ~  

The control u(t), 0 <~ t <~ T for the pursuing player has the form (11) where 

w(t)= ~ "~/2(-l)(k+3)/2(l+(-1)k+3)sinnkx 
k=l 2(v~k) 2 (e ~'k - 1) 

Case 2. Suppose the constraints II u(-) II <~ 2, II u(t) I1 ~< 1, 0 ~< t ~< Tare imposed on the control functions u(.), ,(.).  
Because IIz'° II = 1/L2~/2 ), inequality (9) is satisfied. Hence we apply Section 2 of the theorem. The completion 

time of the game is T = 2 - (~/(2)/4 + 4(4) - 4(2)). 

Case 3. We consider the preceding example with constraints II u(t) II ~< P, 0 ~< t ~< T, II ~(') II ~< o. 
We choose the control u(t), 0 <~ t ~ T of the pursuing player in the form (11) where II w(t) II ~< P - P,  0 ~< t ~< T 

o r  

x]=~k(t)~<(p-p) 2 
k=l  

As in [1] we have 

T =llz ° II/(p - ~) = 1 / [2 "v~(p -  P)I  (17) 

for the completion time of the game. 
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I f w e p u t  p = 2 ,~  = 1, o = 1, it c a n b e  shown 

where 0 < ol  ~< 1. 
From this it follows that 

This means that if 

max,  V, = ; o l  2 , ; = ((2 + 4 4  + ~t27t2o~ )g3)-,  

1 / ( ( 2 + ~ ) n 3 ) , ~ /  

then one can complete the pursuit in a t ime T (17). Otherwise one must transfer to the next step. Here we note 
that the evading player must lose some of his energy. The game thus concludes after a finite number  of steps. 
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